Programmation fonctionnelle pour les développeurs Java, partie 2

Bienvenue à nouveau dans ce didacticiel en deux parties présentant la programmation fonctionnelle dans un contexte Java. Dans la programmation fonctionnelle pour les développeurs Java, partie 1, j'ai utilisé des exemples JavaScript pour vous familiariser avec cinq techniques de programmation fonctionnelle: fonctions pures, fonctions d'ordre supérieur, évaluation paresseuse, fermetures et currying. La présentation de ces exemples en JavaScript nous a permis de nous concentrer sur les techniques dans une syntaxe plus simple, sans entrer dans les capacités de programmation fonctionnelle plus complexes de Java.

Dans la partie 2, nous reviendrons sur ces techniques en utilisant du code Java antérieur à Java 8. Comme vous le verrez, ce code est fonctionnel, mais il n'est pas facile à écrire ou à lire. Vous serez également présenté aux nouvelles fonctionnalités de programmation fonctionnelle qui ont été entièrement intégrées au langage Java de Java 8; à savoir, les lambdas, les références de méthodes, les interfaces fonctionnelles et l'API Streams.

Tout au long de ce didacticiel, nous revisiterons les exemples de la partie 1 pour voir comment les exemples JavaScript et Java se comparent. Vous verrez également ce qui se passe lorsque je mets à jour certains des exemples pré-Java 8 avec des fonctionnalités de langage fonctionnel telles que les lambdas et les références de méthodes. Enfin, ce didacticiel comprend un exercice pratique conçu pour vous aider à pratiquer la pensée fonctionnelle , ce que vous ferez en transformant un morceau de code Java orienté objet en son équivalent fonctionnel.

télécharger Obtenir le code Téléchargez le code source des exemples d'applications dans ce didacticiel. Créé par Jeff Friesen pour JavaWorld.

Programmation fonctionnelle avec Java

De nombreux développeurs ne s'en rendent pas compte, mais il était possible d'écrire des programmes fonctionnels en Java avant Java 8. Afin d'avoir une vue complète de la programmation fonctionnelle en Java, passons rapidement en revue les fonctionnalités de programmation fonctionnelle antérieures à Java 8. vous en aurez probablement plus, vous apprécierez probablement la manière dont les nouvelles fonctionnalités introduites dans Java 8 (comme les lambdas et les interfaces fonctionnelles) ont simplifié l'approche de Java en matière de programmation fonctionnelle.

Limites de la prise en charge de Java pour la programmation fonctionnelle

Même avec des améliorations de programmation fonctionnelle dans Java 8, Java reste un langage de programmation impératif orienté objet. Il manque des types de plage et d'autres fonctionnalités qui le rendraient plus fonctionnel. Java est également entravé par le typage nominatif, qui stipule que chaque type doit avoir un nom. Malgré ces limitations, les développeurs qui adoptent les fonctionnalités fonctionnelles de Java bénéficient toujours de la possibilité d'écrire du code plus concis, réutilisable et lisible.

Programmation fonctionnelle avant Java 8

Les classes internes anonymes ainsi que les interfaces et les fermetures sont trois fonctionnalités plus anciennes qui prennent en charge la programmation fonctionnelle dans les anciennes versions de Java:

  • Les classes internes anonymes vous permettent de transmettre des fonctionnalités (décrites par des interfaces) aux méthodes.
  • Les interfaces fonctionnelles sont des interfaces qui décrivent une fonction.
  • Les fermetures vous permettent d'accéder aux variables dans leurs étendues externes.

Dans les sections qui suivent, nous revisiterons les cinq techniques introduites dans la partie 1, mais en utilisant la syntaxe Java. Vous verrez comment chacune de ces techniques fonctionnelles était possible avant Java 8.

Ecrire des fonctions pures en Java

Le listing 1 présente le code source à un exemple d'application, DaysInMonthqui est écrit en utilisant une classe interne anonyme et une interface fonctionnelle. Cette application montre comment écrire une fonction pure, ce qui était réalisable en Java bien avant Java 8.

Listing 1. Une fonction pure en Java (DaysInMonth.java)

interface Function { R apply(T t); } public class DaysInMonth { public static void main(String[] args) { Function dim = new Function() { @Override public Integer apply(Integer month) { return new Integer[] { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }[month]; } }; System.out.printf("April: %d%n", dim.apply(3)); System.out.printf("August: %d%n", dim.apply(7)); } }

L' Functioninterface générique du Listing 1 décrit une fonction avec un seul paramètre de type Tet un type de retour de type R. L' Functioninterface déclare une R apply(T t)méthode qui applique cette fonction à l'argument donné.

La main()méthode instancie une classe interne anonyme qui implémente l' Functioninterface. La apply()méthode déballe monthet l'utilise pour indexer un tableau d'entiers jours dans le mois. L'entier à cet index est renvoyé. (J'ignore les années bissextiles par souci de simplicité.)

main()next exécute cette fonction deux fois en invoquant apply()pour renvoyer le nombre de jours pour les mois d'avril et d'août. Ces décomptes sont ensuite imprimés.

Nous avons réussi à créer une fonction, et une fonction pure en plus! Rappelez-vous qu'une fonction pure ne dépend que de ses arguments et d'aucun état externe. Il n'y a pas d'effets secondaires.

Compilez le listing 1 comme suit:

javac DaysInMonth.java

Exécutez l'application résultante comme suit:

java DaysInMonth

Vous devez observer la sortie suivante:

April: 30 August: 31

Ecrire des fonctions d'ordre supérieur en Java

Ensuite, nous examinerons les fonctions d'ordre supérieur, également appelées fonctions de première classe. N'oubliez pas qu'une fonction d'ordre supérieur reçoit des arguments de fonction et / ou renvoie un résultat de fonction. Java associe une fonction à une méthode, qui est définie dans une classe interne anonyme. Une instance de cette classe est transmise ou renvoyée par une autre méthode Java qui sert de fonction d'ordre supérieur. Le fragment de code orienté fichier suivant illustre le passage d'une fonction à une fonction d'ordre supérieur:

File[] txtFiles = new File(".").listFiles(new FileFilter() { @Override public boolean accept(File pathname) { return pathname.getAbsolutePath().endsWith("txt"); } });

Ce fragment de code passe une fonction basée sur l' java.io.FileFilterinterface fonctionnelle à la méthode de la java.io.Fileclasse File[] listFiles(FileFilter filter), lui indiquant de ne renvoyer que les fichiers avec des txtextensions.

Le listing 2 montre une autre façon de travailler avec des fonctions d'ordre supérieur en Java. Dans ce cas, le code transmet une fonction de comparateur à une sort()fonction d'ordre supérieur pour un tri d'ordre croissant, et une seconde fonction de comparateur à sort()un tri d'ordre décroissant.

Listing 2. Une fonction d'ordre supérieur en Java (Sort.java)

import java.util.Comparator; public class Sort { public static void main(String[] args) { String[] innerplanets = { "Mercury", "Venus", "Earth", "Mars" }; dump(innerplanets); sort(innerplanets, new Comparator() { @Override public int compare(String e1, String e2) { return e1.compareTo(e2); } }); dump(innerplanets); sort(innerplanets, new Comparator() { @Override public int compare(String e1, String e2) { return e2.compareTo(e1); } }); dump(innerplanets); } static  void dump(T[] array) { for (T element: array) System.out.println(element); System.out.println(); } static  void sort(T[] array, Comparator cmp) { for (int pass = 0; pass 
    
      pass; i--) if (cmp.compare(array[i], array[pass]) < 0) swap(array, i, pass); } static void swap(T[] array, int i, int j) { T temp = array[i]; array[i] = array[j]; array[j] = temp; } }
    

Le listing 2 importe l' java.util.Comparatorinterface fonctionnelle, qui décrit une fonction permettant d'effectuer une comparaison sur deux objets de type arbitraire mais identique.

Two significant parts of this code are the sort() method (which implements the Bubble Sort algorithm) and the sort() invocations in the main() method. Although sort() is far from being functional, it demonstrates a higher-order function that receives a function--the comparator--as an argument. It executes this function by invoking its compare() method. Two instances of this function are passed in two sort() calls in main().

Compile Listing 2 as follows:

javac Sort.java

Run the resulting application as follows:

java Sort

You should observe the following output:

Mercury Venus Earth Mars Earth Mars Mercury Venus Venus Mercury Mars Earth

Lazy evaluation in Java

Lazy evaluation is another functional programming technique that is not new to Java 8. This technique delays the evaluation of an expression until its value is needed. In most cases, Java eagerly evaluates an expression that is bound to a variable. Java supports lazy evaluation for the following specific syntax:

  • The Boolean && and || operators, which will not evaluate their right operand when the left operand is false (&&) or true (||).
  • The ?: operator, which evaluates a Boolean expression and subsequently evaluates only one of two alternative expressions (of compatible type) based on the Boolean expression's true/false value.

Functional programming encourages expression-oriented programming, so you'll want to avoid using statements as much as possible. For example, suppose you want to replace Java's if-else statement with an ifThenElse() method. Listing 3 shows a first attempt.

Listing 3. An example of eager evaluation in Java (EagerEval.java)

public class EagerEval { public static void main(String[] args) { System.out.printf("%d%n", ifThenElse(true, square(4), cube(4))); System.out.printf("%d%n", ifThenElse(false, square(4), cube(4))); } static int cube(int x) { System.out.println("in cube"); return x * x * x; } static int ifThenElse(boolean predicate, int onTrue, int onFalse) { return (predicate) ? onTrue : onFalse; } static int square(int x) { System.out.println("in square"); return x * x; } }

Listing 3 defines an ifThenElse() method that takes a Boolean predicate and a pair of integers, returning the onTrue integer when the predicate is true and the onFalse integer otherwise.

Listing 3 also defines cube() and square() methods. Respectively, these methods cube and square an integer and return the result.

The main() method invokes ifThenElse(true, square(4), cube(4)), which should invoke only square(4), followed by ifThenElse(false, square(4), cube(4)), which should invoke only cube(4).

Compile Listing 3 as follows:

javac EagerEval.java

Run the resulting application as follows:

java EagerEval

You should observe the following output:

in square in cube 16 in square in cube 64

The output shows that each ifThenElse() call results in both methods executing, irrespective of the Boolean expression. We cannot leverage the ?: operator's laziness because Java eagerly evaluates the method's arguments.

Although there's no way to avoid eager evaluation of method arguments, we can still take advantage of ?:'s lazy evaluation to ensure that only square() or cube() is called. Listing 4 shows how.

Listing 4. An example of lazy evaluation in Java (LazyEval.java)

interface Function { R apply(T t); } public class LazyEval { public static void main(String[] args) { Function square = new Function() { { System.out.println("SQUARE"); } @Override public Integer apply(Integer t) { System.out.println("in square"); return t * t; } }; Function cube = new Function() { { System.out.println("CUBE"); } @Override public Integer apply(Integer t) { System.out.println("in cube"); return t * t * t; } }; System.out.printf("%d%n", ifThenElse(true, square, cube, 4)); System.out.printf("%d%n", ifThenElse(false, square, cube, 4)); } static  R ifThenElse(boolean predicate, Function onTrue, Function onFalse, T t) { return (predicate ? onTrue.apply(t) : onFalse.apply(t)); } }

Listing 4 turns ifThenElse() into a higher-order function by declaring this method to receive a pair of Function arguments. Although these arguments are eagerly evaluated when passed to ifThenElse(), the ?: operator causes only one of these functions to execute (via apply()). You can see both eager and lazy evaluation at work when you compile and run the application.

Compile Listing 4 as follows:

javac LazyEval.java

Run the resulting application as follows:

java LazyEval

You should observe the following output:

SQUARE CUBE in square 16 in cube 64

A lazy iterator and more

Neal Ford's "Laziness, Part 1: Exploring lazy evaluation in Java" provides more insight into lazy evaluation. The author presents a Java-based lazy iterator along with a couple of lazy-oriented Java frameworks.

Closures in Java

An anonymous inner class instance is associated with a closure. Outer scope variables must be declared final or (starting in Java 8) effectively final (meaning unmodified after initialization) in order to be accessible. Consider Listing 5.

Listing 5. An example of closures in Java (PartialAdd.java)

interface Function { R apply(T t); } public class PartialAdd { Function add(final int x) { Function partialAdd = new Function() { @Override public Integer apply(Integer y) { return y + x; } }; return partialAdd; } public static void main(String[] args) { PartialAdd pa = new PartialAdd(); Function add10 = pa.add(10); Function add20 = pa.add(20); System.out.println(add10.apply(5)); System.out.println(add20.apply(5)); } }

Listing 5 is the Java equivalent of the closure I previously presented in JavaScript (see Part 1, Listing 8). This code declares an add() higher-order function that returns a function for performing partial application of the add() function. The apply() method accesses variable x in the outer scope of add(), which must be declared final prior to Java 8. The code behaves pretty much the same as the JavaScript equivalent.

Compile Listing 5 as follows:

javac PartialAdd.java

Run the resulting application as follows:

java PartialAdd

You should observe the following output:

15 25

Currying in Java

You might have noticed that the PartialAdd in Listing 5 demonstrates more than just closures. It also demonstrates currying, which is a way to translate a multi-argument function's evaluation into the evaluation of an equivalent sequence of single-argument functions. Both pa.add(10) and pa.add(20) in Listing 5 return a closure that records an operand (10 or 20, respectively) and a function that performs the addition--the second operand (5) is passed via add10.apply(5) or add20.apply(5).

Currying lets us evaluate function arguments one at a time, producing a new function with one less argument on each step. For example, in the PartialAdd application, we are currying the following function:

f(x, y) = x + y

We could apply both arguments at the same time, yielding the following:

f(10, 5) = 10 + 5

However, with currying, we apply only the first argument, yielding this:

f(10, y) = g(y) = 10 + y

We now have a single function, g, that takes only a single argument. This is the function that will be evaluated when we call the apply() method.

Partial application, not partial addition

The name PartialAdd stands for partial application of the add() function. It doesn't stand for partial addition. Currying is about performing partial application of a function. It's not about performing partial calculations.

You might be confused by my use of the phrase "partial application," especially because I stated in Part 1 that currying isn't the same as partial application, which is the process of fixing a number of arguments to a function, producing another function of smaller arity. With partial application, you can produce functions with more than one argument, but with currying, each function must have exactly one argument.

Listing 5 presents a small example of Java-based currying prior to Java 8. Now consider the CurriedCalc application in Listing 6.

Listing 6. Currying in Java code (CurriedCalc.java)

interface Function { R apply(T t); } public class CurriedCalc { public static void main(String[] args) { System.out.println(calc(1).apply(2).apply(3).apply(4)); } static Function
    
     > calc(final Integer a) { return new Function
     
      >() { @Override public Function
      
        apply(final Integer b) { return new Function
       
        () { @Override public Function apply(final Integer c) { return new Function() { @Override public Integer apply(Integer d) { return (a + b) * (c + d); } }; } }; } }; } }
       
      
     
    

Listing 6 uses currying to evaluate the function f(a, b, c, d) = (a + b) * (c + d). Given expression calc(1).apply(2).apply(3).apply(4), this function is curried as follows:

  1. f(1, b, c, d) = g(b, c, d) = (1 + b) * (c + d)
  2. g(2, c, d) = h(c, d) = (1 + 2) * (c + d)
  3. h(3, d) = i(d) = (1 + 2) * (3 + d)
  4. i(4) = (1 + 2) * (3 + 4)

Compile Listing 6:

javac CurriedCalc.java

Run the resulting application:

java CurriedCalc

You should observe the following output:

21

Because currying is about performing partial application of a function, it doesn't matter in what order the arguments are applied. For example, instead of passing a to calc() and d to the most-nested apply() method (which performs the calculation), we could reverse these parameter names. This would result in d c b a instead of a b c d, but it would still achieve the same result of 21. (The source code for this tutorial includes the alternative version of CurriedCalc.)

Functional programming in Java 8

Functional programming before Java 8 isn't pretty. Too much code is required to create, pass a function to, and/or return a function from a first-class function. Prior versions of Java also lack predefined functional interfaces and first-class functions such as filter and map.

Java 8 reduces verbosity largely by introducing lambdas and method references to the Java language. It also offers predefined functional interfaces, and it makes filter, map, reduce, and other reusable first-class functions available via the Streams API.

We'll look at these improvements together in the next sections.

Writing lambdas in Java code

A lambda is an expression that describes a function by denoting an implementation of a functional interface. Here's an example:

() -> System.out.println("my first lambda")

From left to right, () identifies the lambda's formal parameter list (there are no parameters), -> signifies a lambda expression, and System.out.println("my first lambda") is the lambda's body (the code to be executed).

A lambda has a type, which is any functional interface for which the lambda is an implementation. One such type is java.lang.Runnable, because Runnable's void run() method also has an empty formal parameter list:

Runnable r = () -> System.out.println("my first lambda");

You can pass the lambda anywhere that a Runnable argument is required; for example, the Thread(Runnable r) constructor. Assuming that the previous assignment has occurred, you could pass r to this constructor, as follows:

new Thread(r);

Alternatively, you could pass the lambda directly to the constructor:

new Thread(() -> System.out.println("my first lambda"));

This is definitely more compact than the pre-Java 8 version:

new Thread(new Runnable() { @Override public void run() { System.out.println("my first lambda"); } });

A lambda-based file filter

My previous demonstration of higher-order functions presented a file filter based on an anonymous inner class. Here's the lambda-based equivalent:

File[] txtFiles = new File(".").listFiles(p -> p.getAbsolutePath().endsWith("txt"));

Return statements in lambda expressions

In Part 1, I mentioned that functional programming languages work with expressions as opposed to statements. Prior to Java 8, you could largely eliminate statements in functional programming, but you couldn't eliminate the return statement.

The above code fragment shows that a lambda doesn't require a return statement to return a value (a Boolean true/false value, in this case): you just specify the expression without return [and add] a semicolon. However, for multi-statement lambdas, you'll still need the return statement. In these cases you must place the lambda's body between braces as follows (don't forget the semicolon to terminate the statement):

File[] txtFiles = new File(".").listFiles(p -> { return p.getAbsolutePath().endsWith("txt"); });

Lambdas with functional interfaces

I have two more examples to illustrate the conciseness of lambdas. First, let's revisit the main() method from the Sort application shown in Listing 2:

public static void main(String[] args) { String[] innerplanets = { "Mercury", "Venus", "Earth", "Mars" }; dump(innerplanets); sort(innerplanets, (e1, e2) -> e1.compareTo(e2)); dump(innerplanets); sort(innerplanets, (e1, e2) -> e2.compareTo(e1)); dump(innerplanets); }

We can also update the calc() method from the CurriedCalc application shown in Listing 6:

static Function
    
     > calc(Integer a) { return b -> c -> d -> (a + b) * (c + d); }
    

Runnable, FileFilter, and Comparator are examples of functional interfaces, which describe functions. Java 8 formalized this concept by requiring a functional interface to be annotated with the java.lang.FunctionalInterface annotation type, as in @FunctionalInterface. An interface that is annotated with this type must declare exactly one abstract method.

You can use Java's pre-defined functional interfaces (discussed later), or you can easily specify your own, as follows:

@FunctionalInterface interface Function { R apply(T t); }

You might then use this functional interface as shown here:

public static void main(String[] args) { System.out.println(getValue(t -> (int) (Math.random() * t), 10)); System.out.println(getValue(x -> x * x, 20)); } static Integer getValue(Function f, int x) { return f.apply(x); }

New to lambdas?

If you're new to lambdas, you might need more background in order to understand these examples. In that case, check out my further introduction to lambdas and functional interfaces in "Get started with lambda expressions in Java." You'll also find numerous helpful blog posts on this topic. One example is "Functional programming with Java 8 functions," in which author Edwin Dalorzo shows how to use lambda expressions and anonymous functions in Java 8.

Architecture of a lambda

Every lambda is ultimately an instance of some class that's generated behind the scenes. Explore the following resources to learn more about lambda architecture:

  • "How lambdas and anonymous inner classes work" (Martin Farrell, DZone)
  • "Lambdas in Java: A peek under the hood" (Brian Goetz, GOTO)
  • "Why are Java 8 lambdas invoked using invokedynamic?" (Stack Overflow)

I think you'll find Java Language Architect Brian Goetz's video presentation of what's going on under the hood with lambdas especially fascinating.

Method references in Java

Some lambdas only invoke an existing method. For example, the following lambda invokes System.out's void println(s) method on the lambda's single argument:

(String s) -> System.out.println(s)

The lambda presents (String s) as its formal parameter list and a code body whose System.out.println(s) expression prints s's value to the standard output stream.

To save keystrokes, you could replace the lambda with a method reference, which is a compact reference to an existing method. For example, you could replace the previous code fragment with the following:

System.out::println

Here, :: signifies that System.out's void println(String s) method is being referenced. The method reference results in much shorter code than we achieved with the previous lambda.

A method reference for Sort

I previously showed a lambda version of the Sort application from Listing 2. Here is that same code written with a method reference instead:

public static void main(String[] args) { String[] innerplanets = { "Mercury", "Venus", "Earth", "Mars" }; dump(innerplanets); sort(innerplanets, String::compareTo); dump(innerplanets); sort(innerplanets, Comparator.comparing(String::toString).reversed()); dump(innerplanets); }

The String::compareTo method reference version is shorter than the lambda version of (e1, e2) -> e1.compareTo(e2). Note, however, that a longer expression is required to create an equivalent reverse-order sort, which also includes a method reference: String::toString. Instead of specifying String::toString, I could have specified the equivalent s -> s.toString() lambda.

More about method references

There's much more to method references than I could cover in a limited space. To learn more, check out my introduction to writing method references for static methods, non-static methods, and constructors in "Get started with method references in Java."

Predefined functional interfaces

Java 8 introduced predefined functional interfaces (java.util.function) so that developers don't have create our own functional interfaces for common tasks. Here are a few examples:

  • The Consumer functional interface represents an operation that accepts a single input argument and returns no result. Its void accept(T t) method performs this operation on argument t.
  • The Function functional interface represents a function that accepts one argument and returns a result. Its R apply(T t) method applies this function to argument t and returns the result.
  • The Predicate functional interface represents a predicate (Boolean-valued function) of one argument. Its boolean test(T t) method evaluates this predicate on argument t and returns true or false.
  • The Supplier functional interface represents a supplier of results. Its T get() method receives no argument(s) but returns a result.

The DaysInMonth application in Listing 1 revealed a complete Function interface. Starting with Java 8, you can remove this interface and import the identical predefined Function interface.

More about predefined functional interfaces

"Get started with lambda expressions in Java" provides examples of the Consumer and Predicate functional interfaces. Check out the blog post "Java 8 -- Lazy argument evaluation" to discover an interesting use for Supplier.

Additionally, while the predefined functional interfaces are useful, they also present some issues. Blogger Pierre-Yves Saumont explains why.

Functional APIs: Streams

Java 8 introduced the Streams API to facilitate sequential and parallel processing of data items. This API is based on streams, where a stream is a sequence of elements originating from a source and supporting sequential and parallel aggregate operations. A source stores elements (such as a collection) or generates elements (such as a random number generator). An aggregate is a result calculated from multiple input values.

A stream supports intermediate and terminal operations. An intermediate operation returns a new stream, whereas a terminal operation consumes the stream. Operations are connected into a pipeline (via method chaining). The pipeline starts with a source, which is followed by zero or more intermediate operations, and ends with a terminal operation.

Streams is an example of a functional API. It offers filter, map, reduce, and other reusable first-class functions. I briefly demonstrated this API in the Employees application shown in Part 1, Listing 1. Listing 7 offers another example.

Listing 7. Functional programming with Streams (StreamFP.java)

import java.util.Random; import java.util.stream.IntStream; public class StreamFP { public static void main(String[] args) { new Random().ints(0, 11).limit(10).filter(x -> x % 2 == 0) .forEach(System.out::println); System.out.println(); String[] cities = { "New York", "London", "Paris", "Berlin", "BrasÌlia", "Tokyo", "Beijing", "Jerusalem", "Cairo", "Riyadh", "Moscow" }; IntStream.range(0, 11).mapToObj(i -> cities[i]) .forEach(System.out::println); System.out.println(); System.out.println(IntStream.range(0, 10).reduce(0, (x, y) -> x + y)); System.out.println(IntStream.range(0, 10).reduce(0, Integer::sum)); } }

The main() method first creates a stream of pseudorandom integers starting at 0 and ending at 10. The stream is limited to exactly 10 integers. The filter() first-class function receives a lambda as its predicate argument. The predicate removes odd integers from the stream. Finally, the forEach() first-class function prints each even integer to the standard output via the System.out::println method reference.

The main() method next creates an integer stream that produces a sequential range of integers starting at 0 and ending at 10. The mapToObj() first-class function receives a lambda that maps an integer to the equivalent string at the integer index in the cities array. The city name is then sent to the standard output via the forEach() first-class function and its System.out::println method reference.

Lastly, main() demonstrates the reduce() first-class function. An integer stream that produces the same range of integers as in the previous example is reduced to a sum of their values, which is subsequently output.

Identifying the intermediate and terminal operations

Each of limit(), filter(), range(), and mapToObj() are intermediate operations, whereas forEach() and reduce() are terminal operations.

Compile Listing 7 as follows:

javac StreamFP.java

Run the resulting application as follows:

java StreamFP

I observed the following output from one run:

0 2 10 6 0 8 10 New York London Paris Berlin BrasÌlia Tokyo Beijing Jerusalem Cairo Riyadh Moscow 45 45

You might have expected 10 instead of 7 pseudorandom even integers (ranging from 0 through 10, thanks to range(0, 11)) to appear at the beginning of the output. After all, limit(10) seems to indicate that 10 integers will be output. However, this isn't the case. Although the limit(10) call results in a stream of exactly 10 integers, the filter(x -> x % 2 == 0) call results in odd integers being removed from the stream.

More about Streams

If you're unfamiliar with Streams, check out my tutorial introducing Java SE 8's new Streams API for more about this functional API.

In conclusion

Many Java developers won't pursue pure functional programming in a language like Haskell because it differs so greatly from the familiar imperative, object-oriented paradigm. Java 8's functional programming capabilities are designed to bridge that gap, enabling Java developers to write code that's easier to understand, maintain, and test. Functional code is also more reusable and more suitable for parallel processing in Java. With all of these incentives, there's really no reason not to incorporate Java's functional programming options into your Java code.

Write a functional Bubble Sort application

La pensée fonctionnelle est un terme inventé par Neal Ford, qui fait référence au passage cognitif du paradigme orienté objet au paradigme de la programmation fonctionnelle. Comme vous l'avez vu dans ce tutoriel, il est possible d'en apprendre beaucoup sur la programmation fonctionnelle en réécrivant du code orienté objet à l'aide de techniques fonctionnelles.

Terminez ce que vous avez appris jusqu'à présent en revisitant l'application Sort de la liste 2. Dans ce petit conseil, je vais vous montrer comment écrire un tri à bulles purement fonctionnel , en utilisant d'abord les techniques pré-Java 8, puis en utilisant Java 8 caractéristiques fonctionnelles.

Cette histoire, "Programmation fonctionnelle pour les développeurs Java, Partie 2" a été publiée à l'origine par JavaWorld.